Heat Transfer from Extended Surfaces

Two ways to increase the rate of heat transfer:
— increasing the heat transfer coefficient,

— Increase the surface area =>fins
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The convection heat transfer rate may be expressed as
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The general solution of this equation is :
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Boundary Conditions

Several boundary conditions are typically employed as shown in the Figure

T,
Tb
e L,
95 X
S Specified
temperature

(a) Specified temperature
(D) Negligible heat loss

(¢) Convection

(d) Convection and radiation

Boundary condition at fin base:

1 - Convection heat transfer at the fin tip :
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Solving for C, and C,, it may be shown, after some manipulation,

6 _ cosh m(L — x) + (h/mk) sinh m(L — x)
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2- Insulated fin tip  ( Qfintip =0)
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3- Specific temperature end fin (Oqy = O,)
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4- Infinity Fin ( Typ= T )
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Fin Effectiveness
The performance of the fins is judged on the basis of the enhancement in heat

transfer relative to the no-fin case. (50
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Where A, is the cross section area at the base , in general the use of fin may rarely
be justified unless €¢> 2

Fin efficiency

The maximum rate at which a fin dissipate energy is the rate that would exist if the
entire fin surface were at the base temperature
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Where Ags is the surface area of the fin .
For a straight fin of uniform cross section and an adiabatic tip .
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This results tells as that ¢ approaches its maximum and minimum values of 1 and 0

, respectively , as L approaches 0 and o

The correction relation for fin efficiency is:
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Overall Fin efficiency
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Example :

A very long rod 5 mm in diameter has one end maintained at 100°C. The surface of
the rod is exposed to ambient air at 25°C with a convection heat transfer coefficient

of 100 W/m? - K.

Determine the temperature distributions along rods constructed from pure cop-
per, 2024 aluminum alloy, and type AISI 316 stainless steel. What are the cor-
responding heat losses from the rods?

Take for copper k=398 W/m.k , for Aluminum k=180 w/m.k and for steel k=14

w/m.k Air
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Hence for copper,

qr= |:100W/m2 K X 7 X 0.005m

1/2
X 398 W/m - K X 7 (0.005 m)z] (100 — 25)°C
—83W

Similarly, for the aluminum alloy and stainless steel, respectively, the heat rates
are g, = 5.6 Wand 1.6 W,



